初中数学的教学反思最新 初中数学的教学反思最新 范文模板大全(汇编15篇)

初中数学的教学反思最新的主要集中在以下几个方面:

首先,我们需要关注学生的兴趣和参与度。初中学生正处于好奇心强、探索欲旺盛的阶段,因此,如何将数学问题与生活实际相结合,激发学生的学习兴趣,是至关重要的。同时,我们也要关注学生的个体差异,尽可能地提供个性化的教学方案,以提高他们的参与度和学习效果。

其次,我们需要反思教学方法和策略。传统的讲授式教学在某些情况下仍然有效,但在初中数学教学中,我们更应注重问题解决策略、数学思想方法等方面的培养,以提高学生的数学素养和解决问题的能力。

最后,我们需要关注教学效果的评估和反馈。通过定期的测验、考试和学生的反馈,我们可以了解教学效果,进而调整教学策略和方法。同时,我们也要关注学生的进步,及时给予鼓励和指导,以提高学生的学习信心和兴趣。

总之,初中数学教学反思最新的关键在于关注学生兴趣、教学方法和效果评估,以实现教学效果的最优化。

初中数学的教学反思最新 初中数学的教学反思最新 范文模板大全(汇编15篇)

初中数学的教学反思最新1

初中数学教学反思——最为一名数学教育工作者,在这一段阶段的数学教学中,我思考了很多,因此总结了关于初中数学教学反思,期望对于其他的教育同行有所帮忙!

对学生来说是培养潜质的一项有效的思维活动,从所教学生来看,一部分学生根本不按老师要求进行作业后的反思,而这部分学生95%的数学潜质很低、成绩差,他们只会做“结构良好”的题目,以获得对问题的答案为目标,不会提问,这部分学生中,没有一个会对命题进行推广,而坚持写反思的学生状况就大不一样,因此,培养学生反思解题过程是作业之后的一个重要环节,具有很大的现实好处。

案例1,在完成解直角三角形“应用举例”的5个例题后,启发学生对5个题目的解题过程进行类比性反思,出示反思题目:请同学们再看看例题的解题过程,个性要注意在这些过程中相同方法的归纳概括,透过类比反思你能发现什么?在教师的引导下,同学们发现这几个题表面虽有许多不一样之处,但却有如下几点相同:⑴它们都有一个实际问题作背景;⑵都用到了方程的知识;⑶都用到了锐角三角函数的定义;⑷都用到了几何知识。在此基础上老师说:我透过解这几个题的过程的反思与同学们相似,我的反思结论是它们都运用了同一个解题思维策略或同一个解题模式,就是实际问题几何化,几何问题方程化,而列方程的根据正好是刚学过的锐角三角函数的定义,这样就把几个例题的思考过程和解题过程统一成了下列模式(板书,并解释每个箭头的好处)透过对5个例题解题后的反思,学生对解决这类问题的思路更加清晰了,并对反思的对象和方法有了一些体会。

案例2:胡玲同学在解完“梯形abcd中,点e是腰ab上一点,在腰cd上求作一点f,使cf:fd=be:ea”之后在作业的反思栏内写道:“老师,如果e点在底边上,如何在另一底上找到f,我有一种方法,不知对否?作法,1。连结ac;2。作eo//dc交ac于o;3。作of//ab交bc于f。ae:ed=bf:fc。”同时,另一位学生在作业本中提出同样的问题,写道:“如果,在梯形abcd中,点e是底边上一点,那么在另一底边找一点f,使ae:ed=bf:fc,应怎样找?”两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新潜质,我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。第二次作业本交上来了,一位学生对在讨论中提出的新方法给出了证明,他写道:“这天江乔说,如下图,已知梯形abcd,e是底边的一点,延长腰交于f,连结ea交ab与g就是昨日胡玲要找的点。我觉得它说的是对的;证明如下:……(证明略)”我也即时公布了这位学生带给的江乔的发现和他的证明,并说,江乔能想

到这种方法,正如他在反思中所说,是他对解过的p244第22题的反思在那里起了作用,正因当时作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不好停止,必须要多作反思。接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如胡静在反思中写道:“任意多边形,知道一边上一点,就能够由胡玲那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。对吗?”我批语道:“你已推广了胡玲提出的命题,很好,且你是对的,请试一试能不能给出证明”。

鼓励学生结合解题后的反思,提出问题,并将其指定为反思资料之一,既能充分发挥学生的主体性,又能构成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。

透过解题后对习题特征进行反思,用自己的语言或数学语言对习题进行重新概述,培养思维的深刻性,促进知识的正向迁移,提高解题潜质。思维的深刻性表此刻透过表面现象和外部联系提示事物的本质特征,进而深入地思考问题,解完题后经常透过反思题目的特征,加深对题目本质的领悟,从而获得一系列的思维成果,积累属于个人的知识组块,有助于培养思维的深刻性,从而促进知识的正迁移。

后记:初中数学教学反思仅供各位同行参考,期望各位老师从实际状况出发,最初相应的教学调整,祝各位教师们工作顺利!

初中数学的教学反思最新2

在我学习新课程的这段时间里,我对自己过去的教学思想和行为进行了反思,用新课程的理念,对曾经被视为经验的观点和做法进行了重新审视,现将在反思中得到的体会总结出来,改正自己的不足之处:

一、教学中要转换角色,改变已有的教学行为

根据新课程的要求,教师由传统的知识传授者转变为学生学习的组织者;教师成为学生学习活动的引导者,而不再是主导者;教师应从“师道尊严”的架子中走出来,成为学生学习的参与者,师生合作学习,共同进步。

二、教学中要尊重学生已有的知识与经验

在我们设计教学方案时,我们应该想想:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”等。备课时,尽管教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等,这样才符合新课改对教师的要求,更有助于教师教学计划的开展三教师应注重和学生的交流对话

师生间充分的对话交流,无论对群体的发展还是对个体的成长都是十分有益的。如一位教师在教学“平均分”时,设计了学生熟悉的一些生活情境:分桃子、分鱼、分饼干、分苹果等。在交流对话时有的教师提出,仅仅围绕“吃”展开教学似乎有局限,事实上,在生活中我们还有很多东西要进行分配,可以适当扩展教学设计面。这样开放性的讨论能够促进教师更有效地进行反思,促进教师把实践经验上升为理论。

四教师应对每一节课进行总结记录

一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,教学手段的运用是否充分,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。

教学反思被认为是“教师专业发展和自我成长的核心因素”。美国学者波斯纳认为,没有反思的经验是狭隘的经验,至多只能形成肤浅的知识。只有经过反思,教师的经验方能上升到一定的高度,所以,我们应该在平时的教学工作中,不断地进行教学反思,让自己取得更大的进步。

初中数学的教学反思最新3

一、数学教学不能只凭经验

从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依靠经验教学实际上只是将教学实际当作一个操作性活动,即依靠已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和必须的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。

这样从事教学活动,我们可称之为“经验型”的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,正因师生之间在数学知识、数学活动经验、这会社会阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。

二、理智型的教学需要反思

理智型教学的一个根本特点是“职业化”。它是一种理性的以职业道德、职业知识作为教学活动的基本出发点,发奋追求教学实践的合理性。从经验型教学走向理智型教学的关键步骤就是“教学反思”。

对一名数学教师而言教学反思能够从以下几个方面展开:对数学概念的反思、对学数学的反思、对教数学的反思。

1。对数学概念的反思——学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界。而对于教师来说,他还要从“教”的角度去看数学,他不仅仅要能“做”,还应当能够教会别人去“做”,因此教师对教学概念的反思应当从逻辑的、历史的、关联的等方面去展开。

简言之,教师应对数学概念,应当学会数学的思考——为学生准备数学,即了解数学的产生、发展与构成的过程;在新的情境中使用不一样的方式解释概念。

2。对学数学的反思

当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,正因师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

3。对教数学的反思

教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?

我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了必须的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有明白问题的本质性的东西。

初中数学的教学反思最新4

这学期我担任初二级数学教学。由于教学经验尚浅。因此,我对教学工作不敢怠慢,认真学习,深入研究教法,虚心向前辈学习。经过一个学期的努力,获取了很多宝贵的教学经验。以下是我在本学期的教学情况总结。

教学就是教与学,两者是相互联系,不可分割的,有教者就必然有学者。学生是被教的主体。因此,了解和分析学生情况,有针对地教对教学成功与否至关重要。最初接触教学的时候,我还不懂得了解学生对教学的重要性,只是专心研究书本,教材,想方设法令课堂生动,学生易接受。

一方面,农村的学生听,说的能力相对较弱,授课采用普通话教学,同学们还不能适应。另一方面,四班的同学比较活跃,上课气氛积极,但中等生、差生占较大多数,尖子生相对较少。因此,讲得太深,没有照顾到整体,我备课时也没有注意到这点,因此教学效果不如理想。从此可以看出,了解及分析学生实际情况,实事求是,具体问题具体分析,做到因材施教,对授课效果有直接影响。这就是教育学中提到的“备教法的同时要备学生”。这一理论在我的教学实践中得到了验证。

教学中,备课是一个必不可少,十分重要的环节,备学生,又要备教法。备课不充分或者备得不好,会严重影响课堂气氛和积极性,曾有一位前辈对我说:“备课备不好,倒不如不上课,否则就是白费心机。”我明白到备课的重要性,因此,每天我都花费大量的时间在备课之上,认认真真钻研教材和教法,不满意就不收工。虽然辛苦,但事实证明是值得的。

一堂准备充分的课,会令学生和老师都获益不浅。例如我在讲授《平行四边形》的时候,由于这课的内容比较多,不同图形间的一些性质,特征有比较相似。教学难度比较大。如果照本宣科地讲授,学生会感到困难和沉闷。为了上好这堂课,我认真研究了课文,找出了重点,难点,准备有针对性地讲。为了令教学生动,不沉闷,我还为此准备了大量的教具,授课时就胸有成竹了。备课充分,能调动学生的积极性,上课效果就好。但同时又要有驾驭课堂的能力,因为学生在课堂上的一举一动都会直接影响课堂教学。因此上课一定要设法令学生投入,不让其分心,这就很讲究方法了。上课内容丰富,现实。教态自然,讲课生动,难易适中照顾全部,就自然能够吸引住学生。所以,老师每天都要有充足的精神,让学生感受到一种自然气氛。这样,授课就事半功倍。回看自己的授课,我感到有点愧疚,因为有时我并不能很好地做到这点。当学生在课堂上无心向学,违反纪律时,我的情绪就受到影响,并且把这带到教学中,让原本正常的讲课受到冲击,发挥不到应有的水平,以致影响教学效果。我以后必须努力克服,研究方法,采取有利方法解决当中困难。

数学是一门工具学科,对学生而言,既熟悉又困难,在这样一种大环境之下,要教好数学,就要让学生喜爱数学,让他们对数学产生兴趣。否则学生对这门学科产生畏难情绪,不愿学,也无法学下去。为此,我采取了一些方法,就是尽量多讲一些数学典故,让他们更了解数学,更喜欢学习数学。因为只有数学水平提高,他们才能提高同学们的解题能力,对成绩优秀的同学很有好处。

因为数学的特殊情况,学生在不断学习中,会出现好差分化现象,差生面扩大,会严重影响班内的学习风气。因此,绝对不能忽视。为此,我制定了具体的计划和目标。对这部分同学进行有计划的辅导。我把这批同学分为三个组。第一组是有能力提高,但平时懒动脑筋不学的同学,对这些同学,我采取集体辅导,给他们分配固定任务,不让他们有偷懒的机会,让他们发挥应有水平;第二组是肯学,但由于能力不强的同学。对这部分同学要适当引导,耐心教导,慢慢提高他们的成绩,不能操之过急,且要多鼓励。只要他们肯努力,成绩有望搞提高;第三组是纪律松散,学习不认真,基础又不好的同学。对这部分人要进行课余时间个别辅导。因为这部分同学需要一个安静而又不受干扰的环境,才会立下心来学习。只要坚持辅导,这些同学基础重新建立起来,以后授课的效果就会更好。

数学是语言。困此,除了课堂效果之外,还需要让学生多想,多练。为此,在自修时,我坚持下班了解自修情况,发现问题及时纠正。课后发现学生作业问题也及时解决,及时讲清楚,让学生即时消化。另外,对部分不自觉的同学还采取扎实基础的方式,先打实他们的基础,然后想办法提高他们的能力。

经过一个学期的努力,期末考就是一种考验。无论成绩高低,都体现了我在这学期的教学成果。我明白到这并不是最重要的,重要的是在本学期后如何自我提高,如何共同提高学生的数学水平。因此,无论怎样辛苦,我都会继续努力,多问,多想,多向前辈学习,争取进步。

以上就是我在本学期的教学工作总结。由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在各位领导老师,前辈的指导下,取得更好成绩。

初中数学的教学反思最新5

这次考试之所以没有考好,总结原因如下:

1平时没有养成细致认真的习惯,考试的时候答题粗心大意、马马虎虎,导致很多题目会做却被扣分甚至没有做对。

2准备不充分。毛主席说,不打无准备之仗。言外之意,无准备之仗很难打赢,我却没有按照这句至理名言行事,导致这次考试吃了亏。

3没有解决好兴趣与课程学习的矛盾。自己有很多兴趣,作为一个人,一个完整的人,一个明白的人,当然不应该同机器一样,让自己的兴趣被平白无故抹煞,那样不仅悲惨而且无知,但是,如果因为自己的兴趣严重耽搁了学习就不好了,不仅不好,有时候真的是得不偿失。

失败了怎么办?认真反思是首先的:

第一,这次失败的原因是什么?要认真思考,挖掘根本的原因;

第二,你接下来要干什么?确定自己的目标,不要因为失败不甘心接着走,而是要正确地衡量自己。看看想要什么,自己的优势在什么地方,弱势是什么;

第三,确定目标。明确自己想要的,制定计划,按部就班的走。

失败不可怕,可怕的是一蹶不振以及盲目的追求。

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

检讨人:

日期:xx年xx月xx日

初中数学的教学反思最新6

对于刚从小学毕业,步入初一的新生来说,等待他们的是一个完全陌生的环境。这个新的环境与他们过去的环境不一样:课程种类的骤然增多,知识结构的的巨大变化,以及教学资料和思维方式的要求提高,学习环境的改变。这些都使得大多初一学生措手不及,难以适应新的学习环境。所以我认为在初中数学教学中,初一是引导入门,打好基础的关键阶段。下头结合本人很短时间的教学实践,谈几点关于如何搞好初一数学入门教学的体会和做法:

初一学生会对将要学习的新知识产生害怕的心态,认为进入初中后数学的知识将会变的十分复杂,从而产生担心、甚至恐惧的心理。而教师就要及时帮忙学生克服这种心态。所以我在第一节课安排的是“生活中的数学”,在教学活动中我模拟生活、结合生活,赋予数学学习的现实意义。变单调乏味的数学学习为一种体验、一种享受,去关注学生的情感。“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁”,社会各领域无处不有数学的巨大贡献。引导学生将课堂中的数学知识与学生的生活实践结合起来,从心理上真正认为生活是数学知识的源泉。

“兴趣是最好的教师”。仅有学生对数学有了浓厚的兴趣,才有学习的主动性和进取性。而初一的新生的兴趣很大程度受教师的影响,所以教师要充分利用好第一堂课的机会,凭借教师优异的教学素质,敏锐的数学智慧来感染学生,征服学生,激发起学生学习的浓厚兴趣,这将为以后的教学工作打下良好的基础。

由于初一数学教材的知识结构出现了很大的变化:先是负数的引入,完成了有理数域的建立;然后又从具体的数过渡到以字母代表数,体现了由“具体”到“抽象”的飞跃,其特点是概念多,基础性强,与小学相比资料较为抽象,方法更为灵活。所以在教学中,应教会学生多角度、多层次观察分析问题,构成“立体思维”意识,拓宽思维的广度。基于上述原因,初一数学入门阶段教学,重要的是帮忙和引导学生完成两个转变:一是由学习上的依靠性向主动性和独立性转变;二是由概念确定、推理的具体性和感性经验向抽象的逻辑思维转变。如果学生能适应这一转变,取得学习的主动权,就能打下良好的基础。

例如我在引入“相反数”这个概念,向学生列举两个小动物从某地反向行走3米,要求学生用正、负数表示,之后启发学生用加法计算,取数中绝对值,将各数在数轴上表示出来,将结果比较,让学生经过自由辩论的形式,鼓励学生说出不一样看法,我在课堂中只要适时的调控,疑点自会越辩越明,最终归纳总结发现“相反数”的特点。

刚进入初一的学生,第一次接触初中的数学,此时对学生的学习方法的指导显得很重要。首先,要指导学生预习知识,提出章节资料的学习要求和目标,让其围绕目标预习教学资料,弄清例题,并完成简单的一些题目,把存在的问题及时在书中注明;其次,指导学生做好课堂笔记,让学生手动、眼动、脑动,重点记录的资料要板书在黑板上提示学生,书上的资料要让学生注明;然后指导学生作业,作业中,哪些须独立完成,哪些可讨论完成,哪些是在教师提示下讨论完成,应分不一样层次要求学生,同时对评改的作业要督促学生及时修改;最终,指导学生复习,要求学生及时复习所学过的知识,比如在学习整式加减过程中,做一些有关有理数的小练习,让学生明确新旧知识的联系,还有就是指导学生归纳知识,找出各部分知识间的联系,从而将知识转化成一个系统。

在学习过程中,初一学生研究问题较单纯,不善于进行全面深入的思考,对一个问题的认识,往往注意了这一面,忽视了另一面,只看到现象,看不到本质。所以,在教学中,教师也要多给学生发表见解的机会,细心捉摸其思考问题的方法,不要轻易下结论。

学生在学习过程中往往会产生很多难以理解的问题,他们想获得这些知识,好奇又心强,但同时他们的自尊心更强,很要面子,所以经常表现出一种胆怯的心理,害怕自我提问的不恰当挨教师的批评,也怕被同学取笑。所以,要使学生在课堂上敢于提问,首先教师要想办法帮忙学生消除心理障碍,鼓励学生大胆质疑,放心提问。例如:对于情绪紧张而叙述不清楚的学生,教师能够帮忙其说清意思,对于提问有错误的学生,教师不要批评或讽刺,挖苦,要表扬他们的闪光点。另外在课堂上以小组为单位进行提问竞赛活动,一组提出问题另一组回答,组内能够补充回答,这样学生将在竞争的气氛中消除思想顾虑,就能够大胆的质疑和提问。

在教学中要有成效地培养学生的提问本事,不能都按照课本按部就班,教师必须从实际出发,因人施教,因材施教,不断改革教学方法,进取采用科学的手段促使学生乐于提问,敢于提问,正确提问,在提问中受益,在提问中得到知识。

在目前的数学教育中,数学教学普遍存在着这样的下良倾向:加快教学进度,压缩新课教学时间。这种做法使得知识发生过程遭到压缩,学生的思维活动被教师的灌输所替代,学生良好的学习习惯得不到应有的培养,知识的阶段复习受到削减,结果是基础不实。

经过对学生平常的发现,我发觉学生在学习上的成功和失败在学生心理上会引起不一样的情感体验,对学习产生不一样的影响。刚进初中的学生所具备的知识本事相对还比较欠缺,如果有的教师“望生成龙”心切,刚开始一味赶进度,以腾出更多的时间来复习或用来补充资料,提高要求,这很容易造成学生对教师所讲知识没时间去消化,理解不透彻,导致作业无从下手,错误率高,测验得不到好成绩,这给学生增加了失败的情感体验。尤其当学生接连遭受失败时,学习数学的兴趣被挫伤,其后果是使学生对数学产生害怕,厌恶情绪,甚至产生“反正学不好,干脆不学了”的想法,这对我们以后的教学工作极为不利。所以初一教学进度要适当放慢。如有理数的运算中学生能够记住运算法则却不能熟练正确运用等,针对初一学生兴趣和毅志力特点,我在每一个运算法则学完后都安排有练习课,使学生能够巩固做学知识,为后面的学习打下基础。同时我在教学资料的安排上有梯度,课堂上有意识地多安排一些练习的时间,精选一些中下学生“跳一跳,能摘得着”的例题,习题进行训练,让每位学生都有机会体验学习的成就感。xx这一组题目,由易到难,礼貌,兼顾到每一个层次的学生,以能者多做为原则,使学生思维处于高度兴奋和进取探讨的状态之中,学生理解和输出的信息大大增加,到达了个层次互补提高的目的。对于部分稍差的学生,我采取逐题完成的方法,不要求他们作业的数量,可是要求他们在有理数的计算中做一题就掌握一种题目的类型。开始阶段也应多一些对作业的讲评,使学生在讲评中获取成功感受,明白失误原因,消除疑难问题。总之,进度要适当,教师教的节奏与学生学的节奏和谐发展,稳步推进。

总之,要使初一学生学好数学这门课程,首先是使学生对学习有一个正确的认识,而后要抓住学生的兴趣特点,以培养学习兴趣,为初中学好数学打下一个良好的基础。

初中数学的教学反思最新7

随着数学教学改革及新课标的要求,我在课堂教学形成了自己的一些教学特色,然而许多貌似优秀的课堂教学,其实际效果并不理想,究其原因发现根源就在于我在教学过程中及考后的处理,都不同程度地存在着一些误区,从而影响了教学质量的提高。因此下面我浅谈以下这些误区及自己的反思。

一、忽视教学中的陷阱,造成上课一听就懂,课后一做就错的不良后果,从而成为教学上的第一大误区。

课堂教学中,对学生回答问题或板演,我总是想方设法使之不出一点差错,即使是一些容易产生典型错误的稍难问题,我也有“高招”使学生按我设计的正确方法去解决。这样就掩盖了错误的暴露以及纠错过程。我在今后教学中,会通过一两个典型的例题,让学生暴露错解,师生共同分析出错误的原因,学生就能从反面吸取经验教训,迅速从错误中走出来,从而增强辨别错误的能力,同时也提高了分析问题和解决问题的能力。因此,要想少出错,教学中就应该以积极主动的态度对待错误和失败,备课时可适当从错误思路去构思,课堂上应加强对典型歧路的分析,充分暴露错误的思维过程,使学生在纠错的过程中掌握正确的思维方法。

二、忽视甚至放弃三个过程的同步三个过程是:教师的教学过程,知识发生发展过程,学生思维过程。

这一大误区,具体表现在以下两方面:一方面:误认为教材内容就是知识发生发展的全部过程,没有发掘出教材系统前后的本质联系,导致我的教学过程就是照本宣科溜教材。二方面:误认为我的思维逻辑就是学生的思维逻辑,没有充分关注学生知识基础和思维特点,导致我教学过程与学生思维错位或脱节。

在今后的工作中,以新课标的要求为导向,以学生为根本。精心备课。以培养学生的知识应用能力为主,努力提升自己的教育教学水平。

初中数学的教学反思最新8

新课程改革背景下,不仅要通过变革课堂教学方法,学生的学习方式来提高学生的分析问题、解决问题的能力,更重要的是激发学生的创新热情,提高学生的创新能力。如何通过有效教学培养学生的创新思维能力是每位初中数学教师认真探索的课题。

创新是一个民族发展的灵魂,是适应新时期社会对人才的需求。初中数学学科是培养学生创新精神,挖掘创新潜能的重要途径之一。作为初中数学教师,在平时的教学过程中如何培养学生的创造性思维呢?笔者认为应做好以下几方面的工作。

创新能力的培养首先源于学生学习兴趣的激发,学习兴趣是学习的最佳动力,学生爱好这门学科,才能产生学习动机,引起注意,激起情感,促使感知清晰,思维活跃,想象丰富,印象深刻,记忆牢固。因此,要培养学生的创新思维能力,就必须先培养兴趣。在数学教学过程中,为了引发学生的创造性思维,可以创设丰富的数学教学情境,选取那些与学生的生活实际密切联系的内容作为题材,让学生自己去发现问题,激发他们对学习的需要。例如,在讲解一元一次不等式的知识时,本来这些抽象的内容是比较枯燥的,为了提高学生的学习兴趣,让其主动地去学习,在创设情境的时候就可以提一个让学生感兴趣的`问题,比如,让他们走进超市,给他们一定数额的钱,让其计算最多可以买多少钢笔;再如,讲解相似三角形时,可以带学生仰望操场旗杆上高高飘扬的五星红旗时,让其想办法计算操场旗杆的高。如果能够量出你在太阳下的影子长度、旗杆的影子长度,再根据你的身高,怎样计算出旗杆的高度呢?这些都能激发学生主动学习的积极性,使外来动机转化为内在动机。内在动机就是由于学生本人在学习过程中所形成的学习兴趣、好奇心以及发现的诱惑力等而转化来的学习动力。这种内在动机所起的作用是强烈而持久的。

观察能力是学生具备的基本能力,培养学生敏锐的观察力是创造性思维的基础,观察能力决定着创造性思维的深度。在教学过程中,学生的观察力必须日积月累。在具体观察之前,要给学生提出明确而又具体的目的、任务和要求。在学生观察时,教师要起到主导作用,积极地给予指导。必要时,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。例如,学习反比例函数的性质的时候,可以通过多媒体画出具体的图象进行比较。在学生进行观察的时候,我们可以给予提示,当k为正数和负数的时候,函数图象分布有什么不同,当学生分析了以后,教师就可以指导、帮助学生总结规律。

想象能力是思维探索的翅膀,具备一定的想象力,能给创造性思维提供广阔的空间。在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。例如,在复习平行四边形、矩形、菱形、正方形时,要求学生想象如果把平行四边形的一组邻边变成相等时,这时变成了什么图形?如果让平行四边形的一个内角等于90度,这时又变成了什么图形?如果既让平行四边形的一组邻边相等,又让一个内角等于90度,这时又是一个什么图形?这一问题的提出就打开了学生的一连串的想象,平行四边形一组邻边相等时变成了菱形,一个内角为90度时变成了矩形,既有一组邻边相等又有一个内角为90度时变成了正方形。这样培养了学生想象思维的能力。

教育家第斯多惠曾说:“教学的艺术不仅仅在于传授本领,而在于激励、呼唤和鼓励。”青少年的天性是好奇和求异,凡事喜欢问个究竟和另辟蹊径。对此,教师绝不能压抑而应积极引导和鼓励,从而培养学生勇于探索、敢于创造的独创精神。教师要做到这一点,就必须在教育方法上进行改革,综合应用开放式教学、活动式教学、探索式教学,给学生营造一个良好的课堂氛围,激发学生的创新热情。

数学探索能力是在抽象概括能力、推理能力、选择判断能力的基础上发展起来的创造性思维能力,在数学中,它表现在提出数学问题,探求数学结论,探索解题途径,寻找解题规律等一系列有意义的发现活动之中。探索能力强的学生,能迅速地、轻易地从一种心理运算转到另一种心理运算,表现出较强的灵活性,在对思维活动的定向、调节和控制上,有较强的监控能力,对思维过程有较强的自我意识,善于提出问题,敢于大胆猜想。引导学生独立思考,大胆探索,在学习知识的过程中去体验、发现与创造。在课堂上,教师要鼓励学生积极参与讨论、质疑、发表各种见解,形成师生间的能动交流。教师在教学中,力求打破常规,引导学生从多方位去思考问题,对疑难问题能提出较多的思路和见解。

总之,创新思维是创造力的核心,学生的创新是一个自我激励的过程,数学在初中阶段有着十分重要的地位,数学教学与思维密切相关,数学能力具有和一般能力不同的特性,因此,在教学过程中,更要加强对学生创新能力的培养,多给学生自由思维的空间,让不同思维水平的学生的思维能力得到不同程度的发展,只有这样才能培养出有创新意识和创造才能的人才。

初中数学的教学反思最新9

新的数学课程标准要求数学教育要面向全体学生,体现基础性、普及性和发展性的特点。不难看出,从小学数学过渡到初中数学,学习内容和方法,都是个转折,尤其是数学思维上产生质的改变。很多初中学生很难快速地适应过来,很难改变以前的数学思维模式。尤其是在课改初期,很多教师的观念和行为也是需要一个过程去熟悉和深入,这就显得难免会有些力不从心。

主要表现为学习目的不明确,不求上进,对数学学习失去兴趣和信心,注意力分散,上课不认真听讲,思维反映迟慢,情绪消极,作业拖拉,敷衍了事,甚至出现抄袭现象;学习效率低下,学习成绩差,考试作弊,违规违纪,对老师的批评和教育无动于衷,甚至产生逆反心理和对抗情绪,导致自暴自弃。缺乏学习数学的兴趣和学习意志薄弱是造成分化的主要内在心理因素。对于初中学生来说,学习的积极性主要取决于学习兴趣和克服学习困难的毅力。学习意志是为了实现学习目标而努力克服困难的心理活动,是学习能动性的重要体现。学习活动总是与不断克服学习困难相联系的,与小学阶段的学习相比,初中数学难度加深,教学方式的变化也比较大,教师辅导减少,学生学习的独立性增强。在中小衔接过程中有的学生适应性强,有的学生适应性差,表现出学习情感脆弱、意志不够坚强,抵制不了一些网络游戏的影响。在学习中,一遇到困难和挫折就退缩,甚至丧失信心,导致学习成绩下降。

首先表现在教材知识的衔接上,前面所学的知识往往是后边学习的基础;其次还表现在掌握数学知识的技能技巧上,新的技能技巧形成都必须借助于已有的技能技巧。因此,如果学生对前面所学的内容达不到规定的要求,不能及时掌握知识,形成技能,就造成了连续学习过程中的薄弱环节,跟不上集体学习的进程,导致学习分化。

初中阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初中学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。初中数学出现了许多复杂的概念、公式、定理等。只靠机械的’记忆和直观思维是不能完成的。小学习题与例题基本相似,而中学的习题与例题相比变化较大,即使学生上课听懂了,反应稍慢的同学课后仍不会做题。所以学生感到中学课程难度太大,稍一分心就不明白了。

数学新课程标准更加重视学生学习数学的兴趣,可以说,教学的最高境界就是让学生始终保持学习数学的兴趣。做到这一点,他的教学成绩一定是正态分布的,如果说有一点分化的话,那也是向优秀的方向分化。培养学生数学学习兴趣的教学行为很多:1、创设问题情境,让学生积极主动参与教学活动。2、备课时充分考虑数学学习困难生的需要,专为他们设计一些简单问题(这里要防止优秀生“抢食”),并让其体验到成功的愉悦。3、充分认识小组合作学习的作用,创设一个适度的学习竞赛环境。4、发挥趣味数学的作用。5、提高教师自身的教学艺术等等。

教师要加强对学生的学习指导,一方面要有意识地培养学生正确的数学学习观念;另一方面是在教学过程中加强学法指导和学习心理辅导。

要针对后进生抽象逻辑思维能力不适应数学学习的问题,从初一代数教学开始就加强抽象逻辑能力训练,始终把教学过程设计成学生在教师指导下主动探求知识的过程。这样学生不仅学会了知识,还学到了数学的基本思想和基本方法,培养了学生逻辑思维能力,为进一步学习奠定较好的基础。

在新课改理念下,实施素质教育是一项艰巨的任务。我们广大教育工作者要积极实践共同努力,切实把新课改理念落实到工作中去,为培养高素质的人才做出自己的贡献。

初中数学的教学反思最新10

初中数学教学反思笔记“思之不慎,行而失当”反思意识人类早就有之。“反求诸己,扪心自问”、“吾日三省吾身”等至理名言就是佐证。而当今社会反思已成为人们的自觉行为,何况作为教师,在教学中也应适时反思教育的得与失,消去弊端,得教益。

今年,我担任初中数学教学工作,目前学期工作已基本结束,就此,我作了以下反思。

的基础、能力的关注。

机会少、参与面小;课堂留给学生自疑、自悟、自学、自练、自得的时间十分有限。

3、对中考的研究不够,对中考的考试范围、要求、形式、出题的特点及规律的了解不够明确,在课堂教学中依赖于复习资料,缺乏对资料的精选与整合,忽视教师自身对知识框架的主动构建,从而课堂教学缺乏对学生英语知识体系的方法指导和能力培养。

4、课堂设计缺乏适当适时的教学评价,不能及时获悉学生在课堂上有没有收获,有多大收获等学情;课前设计“想教学生什么”,课堂反馈“学生学到什么”和课后反思“学生还想学什么”三个环节没有得到最大程度上的统一。

由于课堂教学中以上问题的存在,学生的数学学习与复习出现了许多问题。

1.学生对数学学习缺乏兴趣、自信心和学习动力;在数学课堂上不积极参与,缺少主动发言的热情或根本不愿意发言;另外,相当一部分学生在听新课时跟不上老师的节奏或不能理解教师相对较快的指示语。

2.学生对数学课堂知识的掌握不实在、理解不全面,课外花的冤枉时间多;而大部分学生对书本知识不够重视,找不到数学学科复习的有效载体,不能有效的利用课本,适时地回归课本,数学复习缺乏系统性,数学学习缺乏主动性。

3.部分学生缺少教师明确的指导,在复习时缺乏系统安排和科学计划,或者学习和复习没有个性化特点,导致学习效果不明显。

4.基于以上情况,我认为作为学生中考的把关者,初中数学教师首先要有正确地意识,应充分认识到:一节课有没有效益,并不是指教师有没有教完内容或教得认真不认真,而是指学生有没有学到什么或学生学得好不好。如果学生不想学或学了没有收获,即使教师教得很辛苦也是无效教学;或者学生学得很辛苦,却没有得到应有的发展,也是无效或低效教学。

针对以上问题,我们可以从以下几个方面进行提高:

教学的设计中要充分为学而教,以学生如何有效获取知识,提高能力的标准来设计教学。课堂设计要有助于学生在课堂上积极参与,有助于他们有效内化知识与信息,复习过程中要重视学习方法的指导,在教学中恰当地渗透中考的信息,拓宽教学内容。

2、数学课堂上教师应及时有效获取学情反馈,有效地进行课前回顾,课堂小结等环节的落实。为有效地提高英语课堂教学效益,教师还可以制定科学的、操作性强的、激励性的英语学习效果评价制度,坚持对学生的听课、作业、笔记等方面进行跟踪,及时了解学生的学习、复习状态与状况,以便在课堂教学过程中做出针对性的调整。

3、注重课堂教学效率的提高,要切实抓好备课这一环节,即备课要精,练习要精,作业要精。同时,我们要积极进行教学反思,由教师自己及时反省、思考、探索和解决教学过程中存在的问题,及时调整教学方法,优化教学过程。在课堂教学中强调基础知识的学习。教师要突破现行教材的局限性,在重点内容上有系统的强化训练。在句法上不能拘泥于传统的计算层面,要搜集材料,适当拓宽。

4、要强化分层次教学与辅导,通过分层次教学和辅导提升学生的成绩,从方法上,要抓住学生学习的薄弱点,区别不同情况,有针对性辅导。从策略上,加强学生实际问题的研究,做到缺什么、补什么,从对象上,要重点关注学科明显薄弱的学生,采用教师定学生、师生结对、辅导等有效形式使学生随时能得到教师的辅导和帮助,从而切实提高学生成绩。

一是抓住课本,有效复习。教材和教学大纲是考前复习和考试命题的依据。因此,在复习时,教师和学生都应认真学习并充分理解和准确把握教学大纲中对基础知识与能力的`要求。

二是系统归纳,分清脉络。在总复习时,要突出一个“总”字。面对上千的题型,通过复习,要使学生对初中数学学习有个总体的、概括的印象。大到计算证明,小到具体的知识点,使学生脑子中有清晰的框架和内容充实的“网络图”。

三是专项练习,有的放矢。对于以往总复习暴露出来的问题,教师应有目的、有针对性地进行专题讲解与训练,搜集、积累学生平时在各方面出现的错误,逐题突破。

在复习中,教师应要求学生学会整理错题,把试卷和做过的练习题里的错题整理出来,专门抄写在一个本子上,及时订正反馈。教师要加以选择,并要求学生有选择性地做基础知识练习,让学生走出题海。关于阅读理解,现在出题内容越来越接近生活,因此,学生复习时应加强练习,广泛接触各种题型,拓展知识面,同时要有意识地积累各种题型的解题方法和技巧,从而可减少中考时的答题失误。

总之,中考数学复习阶段非常重要,复习可以查漏补缺,能使知识达到系统、全面。虽然我们已经逐认识到课堂教学的重要性和对学生指导的紧迫性,但是离相对满意的数学课堂的目标还存在一定的差距。因此,我们需要不断地更新理念,提高自身的理论水平和实践能力,为学生的数学发展和轻松面对中考作出更大的努力。

初中数学的教学反思最新11

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

正确理解分类的标准和按照一定的标准进行分类

正确理解有理数的概念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1,必做题:教科书第18页习题1.2第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学的教学反思最新12

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

启发引导式、讨论式和谈话法

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材p63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材p63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,,-的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材p641、2,p66习题2.4a组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材p66习题2.4a组3、4、5.

初中数学的教学反思最新13

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

探索和掌握平行公理及其推论.

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、工具:直尺、三角板

2、方法:一”落”;二”靠”;三”移”;四”画”。

3、请你根据此方法练习画平行线:

已知:直线a,点b,点c.

(1)过点b画直线a的平行线,能画几条?

(2)过点c画直线a的平行线,它与过点b的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点b画直线a的平行线,能画条;

②过点c画直线a的平行线,能画条;

③你画的直线有什么位置关系?。

②探索:如图,p是直线ab外一点,cd与ef相交于p.若cd与ab平行,则ef与ab平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是()

a、因为a//d,b//c,所以c//db、因为a//c,b//d,所以c//d

c、因为a//b,a//c,所以b//cd、因为a//b,d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为()

a.0个b.1个c.2个d.3个

(二)填空题:

1、在同一平面内,与已知直线l平行的直线有条,而经过l外一点,与已知直线l平行的直线有且只有条。

2、在同一平面内,直线l1与l2满足下列条件,写出其对应的位置关系:

(1)l1与l2没有公共点,则l1与l2;

(2)l1与l2有且只有一个公共点,则l1与l2;

(3)l1与l2有两个公共点,则l1与l2。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。

4、平面内有a、b、c三条直线,则它们的交点个数可能是个。

三、cd⊥ab于d,e是bc上一点,ef⊥ab于f,∠1=∠2.试说明∠bdg+∠b=180°.

初中数学的教学反思最新14

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

掌握从物理问题中建构反比例函数模型.

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

多媒体课件.

活动1

问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流i(安培)和电阻r(欧姆)成反比例,当电阻r=5欧姆时,电流i=2安培.

(1)求i与r之间的函数关系式;

(2)当电流i=0.5时,求电阻r的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量i与r之间的反比例函数关系,可设出其表达式,再由已知条件(i与r的一对对应值)得到字母系数k的值.

生:(1)解:设i=kr∵r=5,i=2,于是

2=k5,所以k=10,∴i=10r.

(2)当i=0.5时,r=10i=100.5=20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力f与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力f不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律”有

fl=1200×0.5.得f=600l

当l=1.5时,f=6001.5=400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力f不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

fl=600,

l=600f.

当f=400×12=200时,

l=600200=3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

fl=600,f=600l.

而f≤400×12=200时.

600l≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为f,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得fl=k,即f=kl(k为常数且k>0)

根据反比例函数的性质,当k>o时,在第一象限f随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x-0.4成反比例,

∴设y=kx-0.4(k≠0).

把x=0.65,y=0.8代入y=kx-0.4,得

k0.65-0.4=0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1kg/m3时二氧化碳气体的体积v的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1kg/m3时,v的值,首先v和ρ的函数关系.

生:v和ρ的反比例函数关系为:v=990ρ.

生:当ρ=1.1kg/m3根据v=990ρ,得

v=990ρ=9901.1=900(m3).

所以当密度ρ=1.1kg/m3时二氧化碳气体的气体为900m3.

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

17.2实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?

设阻力为f1,阻力臂长为l1,所以f1×l1=k(k为常数且k>0).动力和动力臂分别为f,l.则根据杠杆定理,

fl=k即f=kl(k>0且k为常数).

由此可知f是l的反比例函数,并且当k>0时,f随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m)10203040

y(m)

过程:点a(40,10)在反比例函数图象上说明点a的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx,

∵图象经过点a(40,10)把x=40,y=10代入,得10=k40,解得,k=400.

∴函数表达式为y=400x.

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

初中数学的教学反思最新15

:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

:掌握正方形的性质与判定,并进行简单的推理。

:探索正方形的判定,发展学生的推理能

:类比与探究

:可以活动的四边形模型。

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

一:。

【】

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

【】

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

【】

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

活动一:拿出一张矩形纸片,拉起一角,使其宽ab落在长ad边上,如下图所示,沿着b′e剪下,能得到什么图形?

【】

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

:①什么是正方形?

观察发现,从活动中体会。

:演示矩形变为正方形的过程,菱形变为正方形的过程。

认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

小组讨论,分组回答。

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

③正方形有那些性质?

小组讨论,举手抢答。

【】

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

小组充分交流,表达不同的意见。

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

出示例一:正方形abcd的两条对角线ac,bd交与o,ab长4cm,求ac,ao长,及的度数。

方法一解:∵四边形abcd是正方形

∴∠abc=90°(正方形的四个角是直角)

bc=ab=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,ac===4cm

∵ao=ac(正方形的对角线互相平分)

∴ao=×4=2cm

方法二:证明△aob是等腰直角三角形,即可得证。

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形abcd中,e、f、g、h分别在它的四条边上,且ae=bf=cg=dh,四边形efgh是什么特殊的四边形,你是如何判断的?

小组交流,分析题意,整理思路,指名口答。

说明思路,从已知出发或者从已有的判定加以选择。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的abcdc处,说明它们的关系。

发表评论

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:powerpoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰ab沿ad的方向平移到de的位置,那么所得的△dec是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形abcd中,ad∥bc,ab=cd。求证:∠b=∠c

想一想:等腰梯形abcd中,∠a与∠d是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形abcd中,ad∥bc,ab=cd,∠b=60o,bc=10cm,ad=4cm,则腰ab=cm。(投影)

(2)如图,在等腰梯形abcd中,ad∥bc,ab=cd,de∥ac,交bc的延长线于点e,ca平分∠bcd,求证:∠b=2∠e.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形abcd中,ad∥bc,ab=cd,ac、bd相交于o,求证:ac=bd。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

感谢您花时间阅读本文。如果您觉得初中数学的教学反思最新这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

本内容由用户 Linda Taylor 上传分享,若内容存在侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://www.77juzi.com/41685.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注