高中集合知识点总结 高中集合知识点总结归纳 范文模板大全(汇编5篇)

高中集合知识点总结:

1. 集合的基本概念:包括元素和集合两个概念,以及集合的表示法,如列举法、描述法。
2. 集合与集合的关系:包括子集、真子集、属性和相等关系。
3. 集合的运算:包括并集、交集、补集的求法。
4. 元素与集合的关系:包括属于与不属于,重复元素和无重复元素的集合。

以上是高中集合的主要知识点,主要考察学生的理解能力和判断能力。在学习过程中,需要注重理解概念,掌握表示法,理解并集、交集、补集的求法,以及区分元素与集合的关系和集合与集合的关系。

高中集合知识点总结 高中集合知识点总结归纳 范文模板大全(汇编5篇)

高中集合知识点总结1

高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22—27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15—20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17—22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2

选修1–1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1–2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)

理科:选修2—1、2—2、2—3

选修2–1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)

选修2–2:1、导数与微积分2、推理证明:一般不考3、复数

选修2–3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高考的知识板块

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分(一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分—-17分

复数:5分

推理证明

一般高考大题分布

1、17题:三角函数

2、18、19、20三题:立体几何、概率、数列

3、21、22题:函数、圆锥曲线

成绩不理想一般是以下几种情况:

做题不细心,(会做,做不对)

基础知识没有掌握

解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)

心理素质不好

总之学**数学一定要掌握科学的学**方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到2、错题收集、归纳总结

高一年级

必修一

第一章集合与函数概念

第二章基本初等函数(Ⅰ)

第三章函数的应用

必修二

第一章空间几何体

第二章点、直线、平面之间的位置关系

第三章直线与方程

必修三

第一章算法初步

第二章统计

第三章概率

必修四

第一章三角函数

第二章平面向量

第三章三角恒等变换

(二)教学要求

在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。

首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。它们是学**、掌握和使用数学语言的基础,是高中数学学**的出发点。在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。因此集合的基本概念、函数等有关内容是教师重点讲解的内容。

其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。

第三,通过对三角函数的学**,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学**,使学生在学**数学和应用数学方面达到一个新的层次。

第四,学**平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。

第五、在学**空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。

第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的`始终,帮助学生不断地体会“数形结合”的思想方法。

第七、在学**算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。

高二年级

必修五

第一章解三角形

第二章数列

第三章不等式

选修1-1

第一章常用逻辑用语

第二章圆锥曲线与方程

第三章导数及其应用

选修1-2

第一章统计案例

第二章推理与证明

第三章数系的扩充与复数的引入

第四章框图

选修2-1

第一章常用逻辑用语

第二章圆锥曲线与方程

第三章空间向量与立体几何

选修2-2

第一章导数及其应用

第二章推理与证明

第三章数系的扩充与复数的引入

选修2-3

第一章计数原理

第二章随机变量及其分布

第三章统计案例

(二)教学要求

高二上

必修5

学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

选修1—1(文科)

在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

选修2-1(理科)

在本模块中,学生将学**常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。

在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。

在必修阶段学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

在本模块中,学生将在学**平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。

高中集合知识点总结2

什么是不等式?

一般地,用纯粹的大于号“>”、小于号“b,b>a

②传递性:a>b,b>ca>c

③可加性:a>ba+c>b+c

④可积性:a>b,c>0,ac>bc

⑤加法法则:a>b,c>d,a+c>b+d

⑥乘法法则:a>b>0,c>d>0,ac>bd

⑦乘方法则:a>b>0,an>bn(n∈N)

⑧开方法则:a>b>0

数学知识点2、算术平均数与几何平均数定理:

(1)如果a、b∈R,那么a2+b2≥2ab;(当且仅当a=b时等号)

(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:

如果为实数,则重要结论

(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;

(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

数学知识点3、证明不等式的常用方法:

比较法:比较法是最基本、最重要的`方法。

当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。

综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。

分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。

高中集合知识点总结3

集合的分类:

(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N。

在自然数集内排除0的.集合叫做正整数集,记作N+或N_。

整数全体构成的集合,叫做整数集,记作Z。

有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的’点一一对应的数。)

1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中集合知识点总结4

(一)导数第一定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f’(x0),即导数第一定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f’(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y’,f’(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0的解集与定义域的`交集的对应区间为增区间;f(x)r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的.切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2πr=πd

2.圆的面积S=s=πr?

3.扇形弧长l=nπr/180

4.扇形面积S=nπr?/360=rl/2

5.圆锥侧面积S=πrl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4acr

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离d>R+r②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2p表示正n边形的周长

27.正三角形面积√3a/4a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长=d-(R-r)外公切线长=d-(R+r)

32.定理一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35.弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

高中集合知识点总结5

1、集合的概念

集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

3、集合中元素的特性

(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类

集合科根据他含有的元素个数的多少分为两类:

有限集:含有有限个元素的集合。如“方程3x+1=0”的.解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0}。

5、特定的集合的表示

为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

(2)非负整数集内排出0的集合,也称正整数集,记做N或N+。

(3)全体整数的集合通常简称为整数集Z。

(4)全体有理数的集合通常简称为有理数集,记做Q。

(5)全体实数的集合通常简称为实数集,记做R。

感谢您花时间阅读本文。如果您觉得高中集合知识点总结这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

本内容由用户 Linda Taylor 上传分享,若内容存在侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://www.77juzi.com/29700.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注